Termination w.r.t. Q of the following Term Rewriting System could not be shown:

Q restricted rewrite system:
The TRS R consists of the following rules:

eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
app(nil, y) → y
app(add(n, x), y) → add(n, app(x, y))
min(add(n, nil)) → n
min(add(n, add(m, x))) → if_min(le(n, m), add(n, add(m, x)))
if_min(true, add(n, add(m, x))) → min(add(n, x))
if_min(false, add(n, add(m, x))) → min(add(m, x))
rm(n, nil) → nil
rm(n, add(m, x)) → if_rm(eq(n, m), n, add(m, x))
if_rm(true, n, add(m, x)) → rm(n, x)
if_rm(false, n, add(m, x)) → add(m, rm(n, x))
minsort(nil, nil) → nil
minsort(add(n, x), y) → if_minsort(eq(n, min(add(n, x))), add(n, x), y)
if_minsort(true, add(n, x), y) → add(n, minsort(app(rm(n, x), y), nil))
if_minsort(false, add(n, x), y) → minsort(x, add(n, y))

Q is empty.


QTRS
  ↳ Overlay + Local Confluence

Q restricted rewrite system:
The TRS R consists of the following rules:

eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
app(nil, y) → y
app(add(n, x), y) → add(n, app(x, y))
min(add(n, nil)) → n
min(add(n, add(m, x))) → if_min(le(n, m), add(n, add(m, x)))
if_min(true, add(n, add(m, x))) → min(add(n, x))
if_min(false, add(n, add(m, x))) → min(add(m, x))
rm(n, nil) → nil
rm(n, add(m, x)) → if_rm(eq(n, m), n, add(m, x))
if_rm(true, n, add(m, x)) → rm(n, x)
if_rm(false, n, add(m, x)) → add(m, rm(n, x))
minsort(nil, nil) → nil
minsort(add(n, x), y) → if_minsort(eq(n, min(add(n, x))), add(n, x), y)
if_minsort(true, add(n, x), y) → add(n, minsort(app(rm(n, x), y), nil))
if_minsort(false, add(n, x), y) → minsort(x, add(n, y))

Q is empty.

The TRS is overlay and locally confluent. By [15] we can switch to innermost.

↳ QTRS
  ↳ Overlay + Local Confluence
QTRS
      ↳ DependencyPairsProof

Q restricted rewrite system:
The TRS R consists of the following rules:

eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
app(nil, y) → y
app(add(n, x), y) → add(n, app(x, y))
min(add(n, nil)) → n
min(add(n, add(m, x))) → if_min(le(n, m), add(n, add(m, x)))
if_min(true, add(n, add(m, x))) → min(add(n, x))
if_min(false, add(n, add(m, x))) → min(add(m, x))
rm(n, nil) → nil
rm(n, add(m, x)) → if_rm(eq(n, m), n, add(m, x))
if_rm(true, n, add(m, x)) → rm(n, x)
if_rm(false, n, add(m, x)) → add(m, rm(n, x))
minsort(nil, nil) → nil
minsort(add(n, x), y) → if_minsort(eq(n, min(add(n, x))), add(n, x), y)
if_minsort(true, add(n, x), y) → add(n, minsort(app(rm(n, x), y), nil))
if_minsort(false, add(n, x), y) → minsort(x, add(n, y))

The set Q consists of the following terms:

eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
app(nil, x0)
app(add(x0, x1), x2)
min(add(x0, nil))
min(add(x0, add(x1, x2)))
if_min(true, add(x0, add(x1, x2)))
if_min(false, add(x0, add(x1, x2)))
rm(x0, nil)
rm(x0, add(x1, x2))
if_rm(true, x0, add(x1, x2))
if_rm(false, x0, add(x1, x2))
minsort(nil, nil)
minsort(add(x0, x1), x2)
if_minsort(true, add(x0, x1), x2)
if_minsort(false, add(x0, x1), x2)


Using Dependency Pairs [1,13] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:

MINSORT(add(n, x), y) → IF_MINSORT(eq(n, min(add(n, x))), add(n, x), y)
MINSORT(add(n, x), y) → MIN(add(n, x))
MIN(add(n, add(m, x))) → IF_MIN(le(n, m), add(n, add(m, x)))
IF_MINSORT(true, add(n, x), y) → APP(rm(n, x), y)
IF_RM(true, n, add(m, x)) → RM(n, x)
IF_MIN(false, add(n, add(m, x))) → MIN(add(m, x))
IF_MINSORT(false, add(n, x), y) → MINSORT(x, add(n, y))
IF_MIN(true, add(n, add(m, x))) → MIN(add(n, x))
RM(n, add(m, x)) → EQ(n, m)
EQ(s(x), s(y)) → EQ(x, y)
IF_MINSORT(true, add(n, x), y) → MINSORT(app(rm(n, x), y), nil)
MIN(add(n, add(m, x))) → LE(n, m)
RM(n, add(m, x)) → IF_RM(eq(n, m), n, add(m, x))
LE(s(x), s(y)) → LE(x, y)
MINSORT(add(n, x), y) → EQ(n, min(add(n, x)))
IF_RM(false, n, add(m, x)) → RM(n, x)
IF_MINSORT(true, add(n, x), y) → RM(n, x)
APP(add(n, x), y) → APP(x, y)

The TRS R consists of the following rules:

eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
app(nil, y) → y
app(add(n, x), y) → add(n, app(x, y))
min(add(n, nil)) → n
min(add(n, add(m, x))) → if_min(le(n, m), add(n, add(m, x)))
if_min(true, add(n, add(m, x))) → min(add(n, x))
if_min(false, add(n, add(m, x))) → min(add(m, x))
rm(n, nil) → nil
rm(n, add(m, x)) → if_rm(eq(n, m), n, add(m, x))
if_rm(true, n, add(m, x)) → rm(n, x)
if_rm(false, n, add(m, x)) → add(m, rm(n, x))
minsort(nil, nil) → nil
minsort(add(n, x), y) → if_minsort(eq(n, min(add(n, x))), add(n, x), y)
if_minsort(true, add(n, x), y) → add(n, minsort(app(rm(n, x), y), nil))
if_minsort(false, add(n, x), y) → minsort(x, add(n, y))

The set Q consists of the following terms:

eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
app(nil, x0)
app(add(x0, x1), x2)
min(add(x0, nil))
min(add(x0, add(x1, x2)))
if_min(true, add(x0, add(x1, x2)))
if_min(false, add(x0, add(x1, x2)))
rm(x0, nil)
rm(x0, add(x1, x2))
if_rm(true, x0, add(x1, x2))
if_rm(false, x0, add(x1, x2))
minsort(nil, nil)
minsort(add(x0, x1), x2)
if_minsort(true, add(x0, x1), x2)
if_minsort(false, add(x0, x1), x2)

We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
QDP
          ↳ EdgeDeletionProof

Q DP problem:
The TRS P consists of the following rules:

MINSORT(add(n, x), y) → IF_MINSORT(eq(n, min(add(n, x))), add(n, x), y)
MINSORT(add(n, x), y) → MIN(add(n, x))
MIN(add(n, add(m, x))) → IF_MIN(le(n, m), add(n, add(m, x)))
IF_MINSORT(true, add(n, x), y) → APP(rm(n, x), y)
IF_RM(true, n, add(m, x)) → RM(n, x)
IF_MIN(false, add(n, add(m, x))) → MIN(add(m, x))
IF_MINSORT(false, add(n, x), y) → MINSORT(x, add(n, y))
IF_MIN(true, add(n, add(m, x))) → MIN(add(n, x))
RM(n, add(m, x)) → EQ(n, m)
EQ(s(x), s(y)) → EQ(x, y)
IF_MINSORT(true, add(n, x), y) → MINSORT(app(rm(n, x), y), nil)
MIN(add(n, add(m, x))) → LE(n, m)
RM(n, add(m, x)) → IF_RM(eq(n, m), n, add(m, x))
LE(s(x), s(y)) → LE(x, y)
MINSORT(add(n, x), y) → EQ(n, min(add(n, x)))
IF_RM(false, n, add(m, x)) → RM(n, x)
IF_MINSORT(true, add(n, x), y) → RM(n, x)
APP(add(n, x), y) → APP(x, y)

The TRS R consists of the following rules:

eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
app(nil, y) → y
app(add(n, x), y) → add(n, app(x, y))
min(add(n, nil)) → n
min(add(n, add(m, x))) → if_min(le(n, m), add(n, add(m, x)))
if_min(true, add(n, add(m, x))) → min(add(n, x))
if_min(false, add(n, add(m, x))) → min(add(m, x))
rm(n, nil) → nil
rm(n, add(m, x)) → if_rm(eq(n, m), n, add(m, x))
if_rm(true, n, add(m, x)) → rm(n, x)
if_rm(false, n, add(m, x)) → add(m, rm(n, x))
minsort(nil, nil) → nil
minsort(add(n, x), y) → if_minsort(eq(n, min(add(n, x))), add(n, x), y)
if_minsort(true, add(n, x), y) → add(n, minsort(app(rm(n, x), y), nil))
if_minsort(false, add(n, x), y) → minsort(x, add(n, y))

The set Q consists of the following terms:

eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
app(nil, x0)
app(add(x0, x1), x2)
min(add(x0, nil))
min(add(x0, add(x1, x2)))
if_min(true, add(x0, add(x1, x2)))
if_min(false, add(x0, add(x1, x2)))
rm(x0, nil)
rm(x0, add(x1, x2))
if_rm(true, x0, add(x1, x2))
if_rm(false, x0, add(x1, x2))
minsort(nil, nil)
minsort(add(x0, x1), x2)
if_minsort(true, add(x0, x1), x2)
if_minsort(false, add(x0, x1), x2)

We have to consider all minimal (P,Q,R)-chains.
We deleted some edges using various graph approximations

↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ EdgeDeletionProof
QDP
              ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

MINSORT(add(n, x), y) → IF_MINSORT(eq(n, min(add(n, x))), add(n, x), y)
MINSORT(add(n, x), y) → MIN(add(n, x))
MIN(add(n, add(m, x))) → IF_MIN(le(n, m), add(n, add(m, x)))
IF_RM(true, n, add(m, x)) → RM(n, x)
IF_MINSORT(true, add(n, x), y) → APP(rm(n, x), y)
IF_MIN(false, add(n, add(m, x))) → MIN(add(m, x))
IF_MINSORT(false, add(n, x), y) → MINSORT(x, add(n, y))
IF_MIN(true, add(n, add(m, x))) → MIN(add(n, x))
RM(n, add(m, x)) → EQ(n, m)
EQ(s(x), s(y)) → EQ(x, y)
IF_MINSORT(true, add(n, x), y) → MINSORT(app(rm(n, x), y), nil)
RM(n, add(m, x)) → IF_RM(eq(n, m), n, add(m, x))
MIN(add(n, add(m, x))) → LE(n, m)
MINSORT(add(n, x), y) → EQ(n, min(add(n, x)))
LE(s(x), s(y)) → LE(x, y)
IF_RM(false, n, add(m, x)) → RM(n, x)
IF_MINSORT(true, add(n, x), y) → RM(n, x)
APP(add(n, x), y) → APP(x, y)

The TRS R consists of the following rules:

eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
app(nil, y) → y
app(add(n, x), y) → add(n, app(x, y))
min(add(n, nil)) → n
min(add(n, add(m, x))) → if_min(le(n, m), add(n, add(m, x)))
if_min(true, add(n, add(m, x))) → min(add(n, x))
if_min(false, add(n, add(m, x))) → min(add(m, x))
rm(n, nil) → nil
rm(n, add(m, x)) → if_rm(eq(n, m), n, add(m, x))
if_rm(true, n, add(m, x)) → rm(n, x)
if_rm(false, n, add(m, x)) → add(m, rm(n, x))
minsort(nil, nil) → nil
minsort(add(n, x), y) → if_minsort(eq(n, min(add(n, x))), add(n, x), y)
if_minsort(true, add(n, x), y) → add(n, minsort(app(rm(n, x), y), nil))
if_minsort(false, add(n, x), y) → minsort(x, add(n, y))

The set Q consists of the following terms:

eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
app(nil, x0)
app(add(x0, x1), x2)
min(add(x0, nil))
min(add(x0, add(x1, x2)))
if_min(true, add(x0, add(x1, x2)))
if_min(false, add(x0, add(x1, x2)))
rm(x0, nil)
rm(x0, add(x1, x2))
if_rm(true, x0, add(x1, x2))
if_rm(false, x0, add(x1, x2))
minsort(nil, nil)
minsort(add(x0, x1), x2)
if_minsort(true, add(x0, x1), x2)
if_minsort(false, add(x0, x1), x2)

We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [13,14,18] contains 6 SCCs with 6 less nodes.

↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ EdgeDeletionProof
            ↳ QDP
              ↳ DependencyGraphProof
                ↳ AND
QDP
                    ↳ QDPOrderProof
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

APP(add(n, x), y) → APP(x, y)

The TRS R consists of the following rules:

eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
app(nil, y) → y
app(add(n, x), y) → add(n, app(x, y))
min(add(n, nil)) → n
min(add(n, add(m, x))) → if_min(le(n, m), add(n, add(m, x)))
if_min(true, add(n, add(m, x))) → min(add(n, x))
if_min(false, add(n, add(m, x))) → min(add(m, x))
rm(n, nil) → nil
rm(n, add(m, x)) → if_rm(eq(n, m), n, add(m, x))
if_rm(true, n, add(m, x)) → rm(n, x)
if_rm(false, n, add(m, x)) → add(m, rm(n, x))
minsort(nil, nil) → nil
minsort(add(n, x), y) → if_minsort(eq(n, min(add(n, x))), add(n, x), y)
if_minsort(true, add(n, x), y) → add(n, minsort(app(rm(n, x), y), nil))
if_minsort(false, add(n, x), y) → minsort(x, add(n, y))

The set Q consists of the following terms:

eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
app(nil, x0)
app(add(x0, x1), x2)
min(add(x0, nil))
min(add(x0, add(x1, x2)))
if_min(true, add(x0, add(x1, x2)))
if_min(false, add(x0, add(x1, x2)))
rm(x0, nil)
rm(x0, add(x1, x2))
if_rm(true, x0, add(x1, x2))
if_rm(false, x0, add(x1, x2))
minsort(nil, nil)
minsort(add(x0, x1), x2)
if_minsort(true, add(x0, x1), x2)
if_minsort(false, add(x0, x1), x2)

We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


APP(add(n, x), y) → APP(x, y)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Combined order from the following AFS and order.
APP(x1, x2)  =  x1
add(x1, x2)  =  add(x2)

Recursive Path Order [2].
Precedence:
trivial


The following usable rules [14] were oriented: none



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ EdgeDeletionProof
            ↳ QDP
              ↳ DependencyGraphProof
                ↳ AND
                  ↳ QDP
                    ↳ QDPOrderProof
QDP
                        ↳ PisEmptyProof
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
app(nil, y) → y
app(add(n, x), y) → add(n, app(x, y))
min(add(n, nil)) → n
min(add(n, add(m, x))) → if_min(le(n, m), add(n, add(m, x)))
if_min(true, add(n, add(m, x))) → min(add(n, x))
if_min(false, add(n, add(m, x))) → min(add(m, x))
rm(n, nil) → nil
rm(n, add(m, x)) → if_rm(eq(n, m), n, add(m, x))
if_rm(true, n, add(m, x)) → rm(n, x)
if_rm(false, n, add(m, x)) → add(m, rm(n, x))
minsort(nil, nil) → nil
minsort(add(n, x), y) → if_minsort(eq(n, min(add(n, x))), add(n, x), y)
if_minsort(true, add(n, x), y) → add(n, minsort(app(rm(n, x), y), nil))
if_minsort(false, add(n, x), y) → minsort(x, add(n, y))

The set Q consists of the following terms:

eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
app(nil, x0)
app(add(x0, x1), x2)
min(add(x0, nil))
min(add(x0, add(x1, x2)))
if_min(true, add(x0, add(x1, x2)))
if_min(false, add(x0, add(x1, x2)))
rm(x0, nil)
rm(x0, add(x1, x2))
if_rm(true, x0, add(x1, x2))
if_rm(false, x0, add(x1, x2))
minsort(nil, nil)
minsort(add(x0, x1), x2)
if_minsort(true, add(x0, x1), x2)
if_minsort(false, add(x0, x1), x2)

We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ EdgeDeletionProof
            ↳ QDP
              ↳ DependencyGraphProof
                ↳ AND
                  ↳ QDP
QDP
                    ↳ QDPOrderProof
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

LE(s(x), s(y)) → LE(x, y)

The TRS R consists of the following rules:

eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
app(nil, y) → y
app(add(n, x), y) → add(n, app(x, y))
min(add(n, nil)) → n
min(add(n, add(m, x))) → if_min(le(n, m), add(n, add(m, x)))
if_min(true, add(n, add(m, x))) → min(add(n, x))
if_min(false, add(n, add(m, x))) → min(add(m, x))
rm(n, nil) → nil
rm(n, add(m, x)) → if_rm(eq(n, m), n, add(m, x))
if_rm(true, n, add(m, x)) → rm(n, x)
if_rm(false, n, add(m, x)) → add(m, rm(n, x))
minsort(nil, nil) → nil
minsort(add(n, x), y) → if_minsort(eq(n, min(add(n, x))), add(n, x), y)
if_minsort(true, add(n, x), y) → add(n, minsort(app(rm(n, x), y), nil))
if_minsort(false, add(n, x), y) → minsort(x, add(n, y))

The set Q consists of the following terms:

eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
app(nil, x0)
app(add(x0, x1), x2)
min(add(x0, nil))
min(add(x0, add(x1, x2)))
if_min(true, add(x0, add(x1, x2)))
if_min(false, add(x0, add(x1, x2)))
rm(x0, nil)
rm(x0, add(x1, x2))
if_rm(true, x0, add(x1, x2))
if_rm(false, x0, add(x1, x2))
minsort(nil, nil)
minsort(add(x0, x1), x2)
if_minsort(true, add(x0, x1), x2)
if_minsort(false, add(x0, x1), x2)

We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


LE(s(x), s(y)) → LE(x, y)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Combined order from the following AFS and order.
LE(x1, x2)  =  x2
s(x1)  =  s(x1)

Recursive Path Order [2].
Precedence:
trivial


The following usable rules [14] were oriented: none



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ EdgeDeletionProof
            ↳ QDP
              ↳ DependencyGraphProof
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                    ↳ QDPOrderProof
QDP
                        ↳ PisEmptyProof
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
app(nil, y) → y
app(add(n, x), y) → add(n, app(x, y))
min(add(n, nil)) → n
min(add(n, add(m, x))) → if_min(le(n, m), add(n, add(m, x)))
if_min(true, add(n, add(m, x))) → min(add(n, x))
if_min(false, add(n, add(m, x))) → min(add(m, x))
rm(n, nil) → nil
rm(n, add(m, x)) → if_rm(eq(n, m), n, add(m, x))
if_rm(true, n, add(m, x)) → rm(n, x)
if_rm(false, n, add(m, x)) → add(m, rm(n, x))
minsort(nil, nil) → nil
minsort(add(n, x), y) → if_minsort(eq(n, min(add(n, x))), add(n, x), y)
if_minsort(true, add(n, x), y) → add(n, minsort(app(rm(n, x), y), nil))
if_minsort(false, add(n, x), y) → minsort(x, add(n, y))

The set Q consists of the following terms:

eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
app(nil, x0)
app(add(x0, x1), x2)
min(add(x0, nil))
min(add(x0, add(x1, x2)))
if_min(true, add(x0, add(x1, x2)))
if_min(false, add(x0, add(x1, x2)))
rm(x0, nil)
rm(x0, add(x1, x2))
if_rm(true, x0, add(x1, x2))
if_rm(false, x0, add(x1, x2))
minsort(nil, nil)
minsort(add(x0, x1), x2)
if_minsort(true, add(x0, x1), x2)
if_minsort(false, add(x0, x1), x2)

We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ EdgeDeletionProof
            ↳ QDP
              ↳ DependencyGraphProof
                ↳ AND
                  ↳ QDP
                  ↳ QDP
QDP
                    ↳ QDPOrderProof
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

MIN(add(n, add(m, x))) → IF_MIN(le(n, m), add(n, add(m, x)))
IF_MIN(false, add(n, add(m, x))) → MIN(add(m, x))
IF_MIN(true, add(n, add(m, x))) → MIN(add(n, x))

The TRS R consists of the following rules:

eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
app(nil, y) → y
app(add(n, x), y) → add(n, app(x, y))
min(add(n, nil)) → n
min(add(n, add(m, x))) → if_min(le(n, m), add(n, add(m, x)))
if_min(true, add(n, add(m, x))) → min(add(n, x))
if_min(false, add(n, add(m, x))) → min(add(m, x))
rm(n, nil) → nil
rm(n, add(m, x)) → if_rm(eq(n, m), n, add(m, x))
if_rm(true, n, add(m, x)) → rm(n, x)
if_rm(false, n, add(m, x)) → add(m, rm(n, x))
minsort(nil, nil) → nil
minsort(add(n, x), y) → if_minsort(eq(n, min(add(n, x))), add(n, x), y)
if_minsort(true, add(n, x), y) → add(n, minsort(app(rm(n, x), y), nil))
if_minsort(false, add(n, x), y) → minsort(x, add(n, y))

The set Q consists of the following terms:

eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
app(nil, x0)
app(add(x0, x1), x2)
min(add(x0, nil))
min(add(x0, add(x1, x2)))
if_min(true, add(x0, add(x1, x2)))
if_min(false, add(x0, add(x1, x2)))
rm(x0, nil)
rm(x0, add(x1, x2))
if_rm(true, x0, add(x1, x2))
if_rm(false, x0, add(x1, x2))
minsort(nil, nil)
minsort(add(x0, x1), x2)
if_minsort(true, add(x0, x1), x2)
if_minsort(false, add(x0, x1), x2)

We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


IF_MIN(false, add(n, add(m, x))) → MIN(add(m, x))
IF_MIN(true, add(n, add(m, x))) → MIN(add(n, x))
The remaining pairs can at least be oriented weakly.

MIN(add(n, add(m, x))) → IF_MIN(le(n, m), add(n, add(m, x)))
Used ordering: Combined order from the following AFS and order.
MIN(x1)  =  x1
add(x1, x2)  =  add(x2)
IF_MIN(x1, x2)  =  x2

Recursive Path Order [2].
Precedence:
trivial


The following usable rules [14] were oriented: none



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ EdgeDeletionProof
            ↳ QDP
              ↳ DependencyGraphProof
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ QDPOrderProof
QDP
                        ↳ DependencyGraphProof
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

MIN(add(n, add(m, x))) → IF_MIN(le(n, m), add(n, add(m, x)))

The TRS R consists of the following rules:

eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
app(nil, y) → y
app(add(n, x), y) → add(n, app(x, y))
min(add(n, nil)) → n
min(add(n, add(m, x))) → if_min(le(n, m), add(n, add(m, x)))
if_min(true, add(n, add(m, x))) → min(add(n, x))
if_min(false, add(n, add(m, x))) → min(add(m, x))
rm(n, nil) → nil
rm(n, add(m, x)) → if_rm(eq(n, m), n, add(m, x))
if_rm(true, n, add(m, x)) → rm(n, x)
if_rm(false, n, add(m, x)) → add(m, rm(n, x))
minsort(nil, nil) → nil
minsort(add(n, x), y) → if_minsort(eq(n, min(add(n, x))), add(n, x), y)
if_minsort(true, add(n, x), y) → add(n, minsort(app(rm(n, x), y), nil))
if_minsort(false, add(n, x), y) → minsort(x, add(n, y))

The set Q consists of the following terms:

eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
app(nil, x0)
app(add(x0, x1), x2)
min(add(x0, nil))
min(add(x0, add(x1, x2)))
if_min(true, add(x0, add(x1, x2)))
if_min(false, add(x0, add(x1, x2)))
rm(x0, nil)
rm(x0, add(x1, x2))
if_rm(true, x0, add(x1, x2))
if_rm(false, x0, add(x1, x2))
minsort(nil, nil)
minsort(add(x0, x1), x2)
if_minsort(true, add(x0, x1), x2)
if_minsort(false, add(x0, x1), x2)

We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [13,14,18] contains 0 SCCs with 1 less node.

↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ EdgeDeletionProof
            ↳ QDP
              ↳ DependencyGraphProof
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
QDP
                    ↳ QDPOrderProof
                  ↳ QDP
                  ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

EQ(s(x), s(y)) → EQ(x, y)

The TRS R consists of the following rules:

eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
app(nil, y) → y
app(add(n, x), y) → add(n, app(x, y))
min(add(n, nil)) → n
min(add(n, add(m, x))) → if_min(le(n, m), add(n, add(m, x)))
if_min(true, add(n, add(m, x))) → min(add(n, x))
if_min(false, add(n, add(m, x))) → min(add(m, x))
rm(n, nil) → nil
rm(n, add(m, x)) → if_rm(eq(n, m), n, add(m, x))
if_rm(true, n, add(m, x)) → rm(n, x)
if_rm(false, n, add(m, x)) → add(m, rm(n, x))
minsort(nil, nil) → nil
minsort(add(n, x), y) → if_minsort(eq(n, min(add(n, x))), add(n, x), y)
if_minsort(true, add(n, x), y) → add(n, minsort(app(rm(n, x), y), nil))
if_minsort(false, add(n, x), y) → minsort(x, add(n, y))

The set Q consists of the following terms:

eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
app(nil, x0)
app(add(x0, x1), x2)
min(add(x0, nil))
min(add(x0, add(x1, x2)))
if_min(true, add(x0, add(x1, x2)))
if_min(false, add(x0, add(x1, x2)))
rm(x0, nil)
rm(x0, add(x1, x2))
if_rm(true, x0, add(x1, x2))
if_rm(false, x0, add(x1, x2))
minsort(nil, nil)
minsort(add(x0, x1), x2)
if_minsort(true, add(x0, x1), x2)
if_minsort(false, add(x0, x1), x2)

We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


EQ(s(x), s(y)) → EQ(x, y)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Combined order from the following AFS and order.
EQ(x1, x2)  =  x2
s(x1)  =  s(x1)

Recursive Path Order [2].
Precedence:
trivial


The following usable rules [14] were oriented: none



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ EdgeDeletionProof
            ↳ QDP
              ↳ DependencyGraphProof
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ QDPOrderProof
QDP
                        ↳ PisEmptyProof
                  ↳ QDP
                  ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
app(nil, y) → y
app(add(n, x), y) → add(n, app(x, y))
min(add(n, nil)) → n
min(add(n, add(m, x))) → if_min(le(n, m), add(n, add(m, x)))
if_min(true, add(n, add(m, x))) → min(add(n, x))
if_min(false, add(n, add(m, x))) → min(add(m, x))
rm(n, nil) → nil
rm(n, add(m, x)) → if_rm(eq(n, m), n, add(m, x))
if_rm(true, n, add(m, x)) → rm(n, x)
if_rm(false, n, add(m, x)) → add(m, rm(n, x))
minsort(nil, nil) → nil
minsort(add(n, x), y) → if_minsort(eq(n, min(add(n, x))), add(n, x), y)
if_minsort(true, add(n, x), y) → add(n, minsort(app(rm(n, x), y), nil))
if_minsort(false, add(n, x), y) → minsort(x, add(n, y))

The set Q consists of the following terms:

eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
app(nil, x0)
app(add(x0, x1), x2)
min(add(x0, nil))
min(add(x0, add(x1, x2)))
if_min(true, add(x0, add(x1, x2)))
if_min(false, add(x0, add(x1, x2)))
rm(x0, nil)
rm(x0, add(x1, x2))
if_rm(true, x0, add(x1, x2))
if_rm(false, x0, add(x1, x2))
minsort(nil, nil)
minsort(add(x0, x1), x2)
if_minsort(true, add(x0, x1), x2)
if_minsort(false, add(x0, x1), x2)

We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ EdgeDeletionProof
            ↳ QDP
              ↳ DependencyGraphProof
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
QDP
                    ↳ QDPOrderProof
                  ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

RM(n, add(m, x)) → IF_RM(eq(n, m), n, add(m, x))
IF_RM(true, n, add(m, x)) → RM(n, x)
IF_RM(false, n, add(m, x)) → RM(n, x)

The TRS R consists of the following rules:

eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
app(nil, y) → y
app(add(n, x), y) → add(n, app(x, y))
min(add(n, nil)) → n
min(add(n, add(m, x))) → if_min(le(n, m), add(n, add(m, x)))
if_min(true, add(n, add(m, x))) → min(add(n, x))
if_min(false, add(n, add(m, x))) → min(add(m, x))
rm(n, nil) → nil
rm(n, add(m, x)) → if_rm(eq(n, m), n, add(m, x))
if_rm(true, n, add(m, x)) → rm(n, x)
if_rm(false, n, add(m, x)) → add(m, rm(n, x))
minsort(nil, nil) → nil
minsort(add(n, x), y) → if_minsort(eq(n, min(add(n, x))), add(n, x), y)
if_minsort(true, add(n, x), y) → add(n, minsort(app(rm(n, x), y), nil))
if_minsort(false, add(n, x), y) → minsort(x, add(n, y))

The set Q consists of the following terms:

eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
app(nil, x0)
app(add(x0, x1), x2)
min(add(x0, nil))
min(add(x0, add(x1, x2)))
if_min(true, add(x0, add(x1, x2)))
if_min(false, add(x0, add(x1, x2)))
rm(x0, nil)
rm(x0, add(x1, x2))
if_rm(true, x0, add(x1, x2))
if_rm(false, x0, add(x1, x2))
minsort(nil, nil)
minsort(add(x0, x1), x2)
if_minsort(true, add(x0, x1), x2)
if_minsort(false, add(x0, x1), x2)

We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


IF_RM(true, n, add(m, x)) → RM(n, x)
IF_RM(false, n, add(m, x)) → RM(n, x)
The remaining pairs can at least be oriented weakly.

RM(n, add(m, x)) → IF_RM(eq(n, m), n, add(m, x))
Used ordering: Combined order from the following AFS and order.
RM(x1, x2)  =  x2
add(x1, x2)  =  add(x2)
IF_RM(x1, x2, x3)  =  x3

Recursive Path Order [2].
Precedence:
trivial


The following usable rules [14] were oriented: none



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ EdgeDeletionProof
            ↳ QDP
              ↳ DependencyGraphProof
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ QDPOrderProof
QDP
                        ↳ DependencyGraphProof
                  ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

RM(n, add(m, x)) → IF_RM(eq(n, m), n, add(m, x))

The TRS R consists of the following rules:

eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
app(nil, y) → y
app(add(n, x), y) → add(n, app(x, y))
min(add(n, nil)) → n
min(add(n, add(m, x))) → if_min(le(n, m), add(n, add(m, x)))
if_min(true, add(n, add(m, x))) → min(add(n, x))
if_min(false, add(n, add(m, x))) → min(add(m, x))
rm(n, nil) → nil
rm(n, add(m, x)) → if_rm(eq(n, m), n, add(m, x))
if_rm(true, n, add(m, x)) → rm(n, x)
if_rm(false, n, add(m, x)) → add(m, rm(n, x))
minsort(nil, nil) → nil
minsort(add(n, x), y) → if_minsort(eq(n, min(add(n, x))), add(n, x), y)
if_minsort(true, add(n, x), y) → add(n, minsort(app(rm(n, x), y), nil))
if_minsort(false, add(n, x), y) → minsort(x, add(n, y))

The set Q consists of the following terms:

eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
app(nil, x0)
app(add(x0, x1), x2)
min(add(x0, nil))
min(add(x0, add(x1, x2)))
if_min(true, add(x0, add(x1, x2)))
if_min(false, add(x0, add(x1, x2)))
rm(x0, nil)
rm(x0, add(x1, x2))
if_rm(true, x0, add(x1, x2))
if_rm(false, x0, add(x1, x2))
minsort(nil, nil)
minsort(add(x0, x1), x2)
if_minsort(true, add(x0, x1), x2)
if_minsort(false, add(x0, x1), x2)

We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [13,14,18] contains 0 SCCs with 1 less node.

↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ EdgeDeletionProof
            ↳ QDP
              ↳ DependencyGraphProof
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
QDP

Q DP problem:
The TRS P consists of the following rules:

MINSORT(add(n, x), y) → IF_MINSORT(eq(n, min(add(n, x))), add(n, x), y)
IF_MINSORT(true, add(n, x), y) → MINSORT(app(rm(n, x), y), nil)
IF_MINSORT(false, add(n, x), y) → MINSORT(x, add(n, y))

The TRS R consists of the following rules:

eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
app(nil, y) → y
app(add(n, x), y) → add(n, app(x, y))
min(add(n, nil)) → n
min(add(n, add(m, x))) → if_min(le(n, m), add(n, add(m, x)))
if_min(true, add(n, add(m, x))) → min(add(n, x))
if_min(false, add(n, add(m, x))) → min(add(m, x))
rm(n, nil) → nil
rm(n, add(m, x)) → if_rm(eq(n, m), n, add(m, x))
if_rm(true, n, add(m, x)) → rm(n, x)
if_rm(false, n, add(m, x)) → add(m, rm(n, x))
minsort(nil, nil) → nil
minsort(add(n, x), y) → if_minsort(eq(n, min(add(n, x))), add(n, x), y)
if_minsort(true, add(n, x), y) → add(n, minsort(app(rm(n, x), y), nil))
if_minsort(false, add(n, x), y) → minsort(x, add(n, y))

The set Q consists of the following terms:

eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
app(nil, x0)
app(add(x0, x1), x2)
min(add(x0, nil))
min(add(x0, add(x1, x2)))
if_min(true, add(x0, add(x1, x2)))
if_min(false, add(x0, add(x1, x2)))
rm(x0, nil)
rm(x0, add(x1, x2))
if_rm(true, x0, add(x1, x2))
if_rm(false, x0, add(x1, x2))
minsort(nil, nil)
minsort(add(x0, x1), x2)
if_minsort(true, add(x0, x1), x2)
if_minsort(false, add(x0, x1), x2)

We have to consider all minimal (P,Q,R)-chains.